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a b s t r a c t

Job scheduling has always been a challenging task in modern manufacturing and the most real life
scheduling problems which involves multi-criteria and multi-machine environments. In this research our
direction is largely motivated by the adoption of the Just-In-Time (JIT) philosophy in parallel machines
system, where processing times of jobs are controllable. The goal of this paper is to minimize total
weighted tardiness and earliness besides jobs compressing and expanding costs, depending on the
amount of compression/expansion as well as maximum completion time called makespan simulta-
neously. Jobs due dates are distinct and no inserted idle time is allowed after starting machine
processing. Also each machine is capable of processing only some predetermined jobs and operations
with probably different speeds. A Mixed Integer Programming (MIP) model is proposed to formulate
such a problem and is solved optimally in small size instances. A Parallel Net Benefit Compression-Net
Benefit Expansion (PNBC–NBE) heuristic is then presented to acquire the optimal jobs set amount of
compression and expansion processing times in a given sequence. To solve medium-to-large size cases, a
proposed heuristic, two meta-heuristics and a hybrid technique are also employed. Experimental results
demonstrate that our hybrid procedure is a proficient method and could efficiently solve such
complicated problems.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most of research in the literature have treated tardiness and
earliness as two criteria associated with completing a job at a time
different from its given due date since both earliness and tardiness
have affect on the system efficiency and must be taken into
account. In other words, a major force of research in the schedul-
ing field has been directed towards minimizing both tardiness and
earliness penalties of scheduled jobs. Due to the extensive accep-
tance of Just-in-Time (JIT) philosophy in recent years, the due date
requirements have been studied widely in scheduling problems,
especially those with earliness–tardiness penalties. In fact, JIT
philosophy seeks to identify and eliminate waste components as
over production, waiting time, transportation, processing, inven-
tory, movement and defective products [1]. Since earliness could
represent manufacturer concerns and tardiness could embrace
both customer and manufacturer concerns while none of them is
desirable, we aim at minimizing weighted tardiness and earliness
as well as makespan in parallel machines environment. A job in JIT

scheduling environment that completes early must be held in
finished goods inventory until its due date and may result in
additional costs such as deterioration of perishable goods, while a
tardy job which completes after its due date causes a tardiness
penalty such as lost sales, backlogging cost, etc. So, an ideal
schedule is one in which all jobs finish exactly on their assigned
due dates [2]. Owing to their imposed additional costs to produc-
tion systems, both earliness and tardiness must be minimized
since neither of them is desirable. Baker and Scudder [3] presented
the first survey on early/tardy (E/T) scheduling problems. Also this
category of problems has been shown as NP-hard ones [4,5].

Machine scheduling problems fall into two main classes, single
machine and multi-machine problems. Despite researches focused
mostly on single machine E/T scheduling, since it is easier to solve,
however parallel machine E/T scheduling problems are more prac-
tical in industrial production environments, such as mechanical
industry, electronic industry and so on. The majority of earlier studies
on parallel machine scheduling have dealt with performance criteria
such as mean flowtime, mean tardiness, makespan and mean
lateness. In accordance with increasing current trends towards JIT
policy, traditional performance measures are no longer applicable. In
its place, the emphasis has shifted towards E/T scheduling taking
earliness in addition to tardiness into account [3]. Generally speaking,
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readers interested in earliness–tardiness scheduling are referred to a
survey conducted by Baker and Scudder [3] and the recent book by
T’kindt and Billout [6]. Also readers especially interested in earliness
and tardiness scheduling with setup considerations are referred to
the survey article by Allahverdi et al. [7].

On the other hand, from among different types of parallel
machines, scheduling of unrelated ones is one of the most important
and yet complicated issues in the multi-machine manufacturing
environments. Meanwhile, in spite of large amount of researches
on parallel machines, few of them have surveyed unrelated parallel
ones or sequence-dependent setups. In general, such a problem
consists of simultaneous job allocation and job sequencing to the
machines with similar, but not necessarily identical capabilities. Also
in multi-machine manufacturing systems, the unit-time value of
different processors may quite vary because of the technology
differences, energy or labor requirements, tool usage and failure
rates. Therefore, the job-machine assignment is very important and
may affect the total processing costs. Of papers which are published
in this field, one may refer to Li and Yang [8], Kim et al. [9] and
Logendran et al. [10].

The rest of the paper is organized as follows: Section 2 gives
related literature. In Section 3 problem description and basic
properties will be described. Section 4 explains our proposed
PNBC–NBE heuristic in detail. In Section 5 evolutionary algorithms
consist of two meta-heuristics and a hybrid one are described.
Section 6 discusses computational studies. Finally, Section 7
includes conclusions and future researches.

2. Literature survey

Widely used performance measures in due date-related schedul-
ing problems include maximum tardiness, total or mean tardiness,
total weighted tardiness/earliness and the number of tardy jobs
[11,12]. Morton and Pentico [13] and Liaw et al. [14] indicated due
date-related problems for multi-machine environments are usually
computationally complex and therefore most existing consequences
are typically for small size problems or simple settings. Cheng and
Sin [15] studied a comprehensive review on parallel machine
scheduling problems with conventional performance measures
based on due date, completion time, and flow time. Rocha et al.
[16] studied unrelated parallel machines considering sequence and
machine-dependent setup times, due dates and weighted jobs. Also,
Bank and Werner [17] considered unrelated parallel machine regard-
ing release date as well as common due date where each of n jobs
has to be processed without interruption on exactly one of m
unrelated parallel machines.

Earliness and tardiness criteria were studied simultaneously on
parallel machines in several papers. Of them, Sivrikaya and Ulusoy
[18] developed a genetic algorithm (GA) approach to tackle the
scheduling problem relevant to a set of independent jobs on parallel
machines with earliness and tardiness penalties. Biskup and Cheng
[19] studied scheduling of identical parallel machines with minimiz-
ing earliness, tardiness and completion time penalties goals. Ventura
and Kim [20] considered parallel machines scheduling problem
where jobs have noncommon due dates and may require, besides
machines, certain additional limited resources for their handling and
processing with the goal of minimizing total absolute deviation of job
completion times about the corresponding due dates. Kedad-
Sidhoum et al. [21] addressed the parallel machine scheduling
problem in which the jobs have distinct due dates with earliness
and tardiness costs.

Toksari and Guner [22] considered a parallel machine E/T
scheduling problem with common due date and different penal-
ties under the effects of position based learning and linear and
nonlinear deterioration. Lin et al. [23] compared the performance

of various heuristics and one meta-heuristic for unrelated parallel
machine scheduling problems with the goal of minimizing make-
span, total weighted completion time, and total weighted tardi-
ness. Hsu et al. [24] studied unrelated parallel machine scheduling
problem with setup time and learning effects simultaneously, in
which the setup time is proportional to the length of the already
processed jobs (i.e., the setup time of each job is past-sequence-
dependent) with the objective of minimizing the total completion
time. They showed that there exists a polynomial time solution for
the proposed problem. In similar research, Kuo et al. [25] studied
unrelated parallel machine scheduling problem with setup time
and learning effects simultaneously in which the setup time is
proportional to the length of the already processed jobs. Their
objectives were to minimize the total absolute deviation of job
completion times and the total load on all machines, respectively.
They also showed that the proposed problem is polynomially
solvable. Mor and Mosheiov [26] showed that minimizing total
absolute deviation of job completion times (TADC) remains poly-
nomial when position-dependent processing times are assumed
(i) on uniform and unrelated machines and (ii) for a bicriteria
objective consisting of a linear combination of total job completion
times and TADC. Bozorgirad and Logendran [27] addressed a
sequence-dependent group scheduling problem on a set of
unrelated-parallel machines where the run time of each job differs
on different machines. To benefit both producers and customers
they tried to minimize a linear combination of total weighted
completion time and total weighted tardiness. Vallada and Ruiz
[28] studied unrelated parallel machine scheduling problem with
machine and job-sequence dependent setup times with the
objective of minimizing the total weighted earliness and tardiness.
The idle time is allowed in their research. M′Hallah and Al-Khamis
[29] addressed minimum weighted earliness–tardiness parallel
machine scheduling problem with distinct deterministic known
due dates regarding allowable machine idle time. They provided
the exact solution for small or relatively easy instances.

In the face of real-life situation most classical scheduling models
assume that job processing times are fixed, while the processing
times depending on the amount of resources such as budgets,
facilities capabilities, manpower. The controllable processing time
means each job could process in a shorter or longer time depends on
its efficacy on objective function by reducing or increasing the
available resources such as equipment, energy, financial budget,
subcontracting, overtime, fuel or human resources. When the pro-
cessing times of jobs are controllable, selected processing times affect
both the manufacturing cost and the scheduling performance. As an
applicable case for such assumption, in chemical industry, the
processing time of a job is increased by an inhibitor or reduced
using catalyzer. An inhibitor is any agent that interferes with the
activity of an enzyme. Actually, enzyme inhibitors are molecules that
bind to enzymes and decrease their activity. More applications of
such a substance could be found in Wang et al. [30] and Sørensen
et al. [31]. CNC machines are other high usage examples in which job
processing times could be controlled by setting the cutting speed
and/or the feed rate on the machines.

There is a remarkable relation between E/T scheduling problems
and controllable processing times concept, since by controlling the
process time of jobs, earliness and tardiness could be decreased and
consequently the scheduling environment gets closer to JIT philoso-
phy. Almost certainly, Vickson [32] has studied one of the first
researches on controllable processing time scheduling problems,
with the objective of minimizing the total flow time and the total
processing cost incurred due to job processing time compression.
Researches on scheduling problem with controllable processing
times and linear cost functions up to 1990 are surveyed by Nowicki
and Zdrzalka [33]. Also Shabtay and Steiner [34] have conducted a
complete survey on scheduling with controllable processing times.
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Nowicki and Zdrzalka [35] considered a bicriterion approach to
preemptive scheduling of m parallel machines for jobs having
processing costs which are linear functions of variable processing
times. In non-identical parallel machines environment, Alidaee and
Ahmadian [36] surveyed this category of scheduling with linear
compression cost functions to minimize: (1) the total compression
cost and the total flow time; and (2) the total compression cost and
the weighted sum of earliness and tardiness penalties. They for-
mulated both problems as transportation problems. Cheng et al. [37]
studied the unrelated parallel machine scheduling problem which
processing times of jobs could only be compressed through incurring
an extra cost, as this cost is a convex function of the amount of
compression. They also assumed that due date is unrestrictively
large. Jansen and Mastrolilli [38] studied the identical parallel
machines makespan problem with controllable processing time. Job
is allowed to compress its processing time in return for compression
cost. Gurel and Akturk [39] surveyed the identical parallel CNC
machines with controllable processing time which a time/cost
trade-off consideration is conducted. As another work on non-
identical parallel machine, Gurel et al. [40] considered a status in
which processing times could be controlled at a certain compression
cost. They used an anticipative approach to form an initial schedule
so that the limited capacity of the production resources is utilized
more effectively. Turkcan et al. [41] studied parallel CNC machines
with controllable processing times with the minimization of manu-
facturing cost and total weighted earliness and tardiness objective.
They assumed that parts have job-dependent earliness and tardiness
penalties and also distinct due dates and allowable idle time was
regarded, but they did not consider decompression costs. Aktürk
et al. [42] considered a non-identical parallel machining where
processing times of the jobs are only compressible at a certain
manufacturing cost, which is a convex function of the compression
on the processing time. They introduced alternative match-up
scheduling problems for finding schedules on the efficient frontier
of time/cost tradeoff. Also Leyvand et al. [43] studied scheduling of
parallel machines regarding controllable processing times with the
goal of maximizing the weighted number of jobs that are completed
exactly at their due date and minimizing the total resource allocation
cost. Li et al. [44] considered the identical parallel machine schedul-
ing problem to minimize the makespan with controllable processing
times, in which the processing times are linear decreasing functions
of the consumed resource.

In addition to the mentioned studies, there are some ones
which addressed the parallel processors with fuzzy processing
times. Of them, one could refer to Peng and Liu [45] which
developed a methodology for modeling parallel machine schedul-
ing problems with fuzzy processing times. They presented three
novel types of fuzzy scheduling models. Alcan and Başlıgil [46]
presented a kind of GA based on machine code for minimizing the
processing times in non-identical machine scheduling problem.
They used triangular fuzzy processing times in order to adapt the
GA to non-identical parallel machine scheduling problem. Also,
Balin [47] addressed parallel machine scheduling problems with
fuzzy processing times in which a robust GA approach embedded
in a simulation model is proposed to minimize the maximum
completion time (makespan). Chyu and Chang [48] presented two
simulated annealing (SA) and a greedy randomized adaptive
search procedure (GRASP) to solve unrelated parallel machine
scheduling problems (UPMSPs) with two fuzzy optimization
objectives � makespan and average tardiness. Kwong et al. [49]
used GA and fuzzy-set theory to generate fault-tolerant fabric-
cutting schedules in a JIT production environment. Their proposed
method is demonstrated by two cases with production data
collected from a Hong Kong-owned garment production plant in
China. Mok et al. [50] proposed a fuzzification scheme to fuzzify
the static standard time so as to incorporate some uncertainties, in

terms of both job-specific and human related factors, into the
fabric-cutting scheduling problem. A genetic optimization proce-
dure is also proposed to search for fault-tolerant schedules using
GAs, such that makespan and scheduling uncertainties are
minimized.

GA as one of the most famous and well-known techniques and
Imperialist Competitive Algorithm (ICA) as a novel global search
heuristic are employed in this paper to acquire the reasonable
solutions in large scale problems, since parallel machines were proven
to be NP-hard. Successful application of GA in E/T parallel machines
problems could be found in Cheng et al. [51], Funda and Gunduz [52]
and Min and Cheng [53]. To the best of author′s knowledge, no
outstanding research is found in which both earliness and tardiness
criteria as well as makespan has been studied on unrelated parallel
processors wherein the processing times are controllable.

3. Problem description and basic properties

In this section, a Mixed Integer Programming (MIP) mathema-
tical model is proposed for unrelated parallel machines with the
objective of minimizing total earliness and tardiness in addition to
makespan simultaneously, considering SDST assumption. In
this context, a set of N jobs denoted by 1, 2,.., n has to be processed
on a set of M unrelated parallel machines denoted by M1, M2, …,
Mm. The setups are assumed to be simultaneously machine and
job dependent, so when a given job i is processed immediately
after job k on machine m, a setup time Skim is incurred. The
proposed model is constructed according to the following
assumptions:

3.1. Assumptions

� All jobs and machines are
available in time zero.

� Each machine could process
only one operation at a time.

� The setup time for each job
on each machine is
sequence-dependent.

� After starting the process by
machine, no idle time could
be inserted into the
schedule.

� No job operation preemption
is allowed.

� All machines are unrelated
and each job could be
processed by a free machine.

� Each machine is capable of
processing only some
given jobs.

� Machines are available
throughout the scheduling
period (i.e., no breakdown).

� Transportation time
between machines is
negligible.

� The process time of each job
on each machine differs.

� Each job has a distinct due
date and must be processed
only one time.

� All processing times and due
dates are deterministic and
pre-defined.

� Number of jobs and
machines are fixed.

3.2. Notations

3.2.1. Subscripts

N Number of jobs
M Number of machines
i, j, k Index for job (i, j, k¼0,1,…,N)
m Index for machine (m¼1, 2,…,M)
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3.2.2. Input parameters

pim Processing time of job i on machine m
p′im Crash (minimum allowable) processing time of job i on

machine m
p″im Expansion (maximum allowable) processing time of job i

on machine m
cim Compression unit cost of job i on machine m
c′im Expansion unit cost of job i on machine m
αi Earliness penalty for job i
βi Tardiness penalty for job i
di Due date of job i
λ Factory costs per time unit (including machines, labor

and variable production costs and the costs dependent to
the work time)

Skim Setup time for assigning job i after job k on machine m
bim 1 if machine m is capable of processing job i;¼0

otherwise
A An arbitrary big positive number

3.2.3. Decision variables

Ci Completion time of job i
Cmax Total completion time or makespan
Ei Earliness of job i; Ei¼max{0, di�Ci}
Ti Tardiness of job i; Ti¼max{0, Ci�di}
xim Compression amount of job i on machine m; 0rximrLim
x′im Expansion amount of job i on machine m; 0rx′imrL′im
Lim Maximum amount of job i compression on machine m;

Lim¼pim�p′im
L′im Maximum amount of job i expansion on machine m;

L′im¼p″im�pim
yikm 1 if and only if job i and job k are done on machine m and

job i is done earlier than job k.

3.3. The mathematical model

Min Z ¼min λCmax þ ∑
N

i ¼ 1
ðαiEi þ βiT iÞ þ ∑

M

m ¼ 1
∑
N

i ¼ 1
ðcimxim þ c′imx

′
imÞ

 !

ð1Þ

∑
N

k ¼ 1
y0km ¼ 1 8m; ð2Þ

∑
N

k ¼ 1
yikmrbim 8m; iAf1; :::;Ng; iak; ð3Þ

∑
M

m ¼ 1
∑
N

i ¼ 0
yikmr1 8kAf1; :::;Ng; iak; ð4Þ

∑
M

m ¼ 1
∑
N

i ¼ 0
∑
N

k ¼ 1
yikm ¼N iak; ð5Þ

∑
N

i ¼ 0
yikmZ ∑

N

j ¼ 1
ykjm 8m; kAf1; :::;Ng; iak; jak; ð6Þ

Ci�di ¼ Ti�Ei 8 i; ð7Þ

Ck þ pim�xim þ x′im þ Skim
�A� ð1�ykimÞrCi 8m; i; kAf1; :::;Ng; iak; ð8Þ

Ck þ pim�xim þ x′im þ SkimrCi 8m; i; kAf0g; iak; ð9Þ

CmaxZCi 8 i; ð10Þ

pim�p′imZxim 8 i; m; ð11Þ

p″im�pimZx′im 8 i; m; ð12Þ

yikmAf0;1g 8 i; k;m; ð13Þ

Ti; Ei; Ci; xim; x′imZ0 8 i; m; ð14Þ
Our multi-criteria objective function is stated in Eq. (1) which aims
at minimizing maximum completion time called makespan and
total weighted tardiness and earliness as well as jobs compression
and expansion cost, depends on amount of compression/expan-
sion. Eq. (2) guarantees that dummy job 0 must be processed
earlier than any other job on each machine and subsequently the
other jobs could be processed. Constraint (3) ensures that only one
job after another utmost could be processed on each machine
where this machine is capable of processing this new job.
Constraint (4) makes sure there was utmost only one job before
processing another job on the same machine. Actually Constraints
(3) and (4) together ensure that there is only one job before and
one job after the current given job on the same machine. Eq. (5)
guarantees all jobs must be processed on machines. Equality (6)
ensures that job i could be processed on only one machine. Eq. (7)
defines the earliness and tardiness of job i. Since each job could
only be tardy or early, if it could not be delivered timely, so it is
obvious that Ti and Ei cannot take value simultaneously. Con-
straints (8) and (9) together ensure that only after starting the
process by machine, no idle time could be inserted into the
schedule, and no preemption of job is allowable. Also these
constraints guarantee that only one job could be processed in
each time on machine m. Set (10) defines the maximum comple-
tion time. Inequalities (11) and (12) limit the amount of compres-
sion and expansion of each job on each machine. Set (13) defines
the binary variables and Set (14) identifies non-negativity
constraints.

The considered properties of this problem, to a large extend,
make it more realistic. Given the above system description, the
objective is to determine the job-machine assignments and the
jobs sequencing on each machine, simultaneously so that the total
weighted earliness and tardiness besides cost of compressing and
expanding of jobs as well as makespan is minimized.

4. The proposed PNBC–NBE

The proposed algorithm is expansion of net benefit compres-
sion–net benefit expansion (NBC–NBE) algorithm for single
machine which is proposed by Kayvanfar et al. [54]. The concept
of NBC–NBE algorithm is close to NBC one with a main idea similar
to marginal cost analysis used in PERT/CPM with time/cost trade-
off [55].

Theorem 1. The NBC–NBE algorithm yields the optimal amount
of compression/expansion for a given sequence.

Proof. In order to prove the optimality amount of acquired job
compression/expansion processing times, suffice it to say that the
best selection is the job with maximum NBC or NBE to approach to
such a goal. Choosing NBC or NBE has no difference in improving
the objective function, since both of them is based on net benefit
of compression or expansion. A backward approach is used to
show this proof. First of all, it should be said that choosing the job
with maximum NBC or NBE in last iteration results in its best
consequence, since otherwise a better objective function value
could be acquired in such a manner. Now, suppose that the best
choice is the job with maximum NBC or NBE in iteration N+1.
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Thereafter, we'll show that it is valid in iteration N. We use the
contradiction philosophy to prove this claim. Suppose that job r be
the job with maximum NBC or NBE in iteration N and the best
selection in this iteration is another job called job u. If these jobs
are selected in two consecutive steps, regardless of which job is
selected at first, the objective function value will be the same. But,
it must be mentioned that choosing job u firstly could be
dominated by choosing job r firstly since one may occur that job
u are negative in step N+1 and thereafter we could not select it in
this iteration. Consequently, using aforementioned statements we
proved that selecting job r in iteration N is the best choice. □

It is important to remind that the NBC–NBE algorithm could be
applied on each single machine for a given sequence, separately.
Applying NBC–NBE on parallel machine is actually an expansion
version of single one. In order to improve the NBC–NBE perfor-
mance on parallel machines we employ PNBC–NBE heuristic to
ensure the best possible result of such algorithm. For scrutiny
NBC–NBE performance, one could refer to Kayvanfar et al. [54]. As
per our paper we aim at total tardiness and earliness criteria
simultaneously in context of JIT approach, our PNBC–NBE must
satisfy such a criterion. So, in the following subsection, we present
another heuristic to assign the jobs on parallel machines.

4.1. Initial sequence on parallel machines considering JIT approach

Since tardiness and earliness are two reverse concepts, acquir-
ing an algorithm which could minimize both simultaneously is
obviously hard on a given machine, because trying to reduce one
may result in an increase in the other and vice versa. In this
context, owing to the importance of assigning jobs on parallel
machines based on minimizing total tardiness and earliness at
once we present such a heuristic to allocate the jobs on parallel
machines. The steps of the presented heuristic called Initial
Sequence based on Earliness–Tardiness criterion on Parallel
machines (ISETP) are as follows:

Procedure 1. ISETP

(1) Sort the jobs according to Earliest Due Date (EDD) criterion
and put them in unscheduled jobs category, US.

(2) Assign the first job to the first capable machine and set it in
scheduled job category, S.

Do the following steps until no outstanding job is found:

(3) Assign next unscheduled job in EDD order to each capable
machine separately and then calculate the Cmax of each
machine.

(4) Compute the difference between due date of this job and Cmax

of such machine (Cmaxj ) called Uj ¼ jCmaxj�djj.
(5) Select the assignment which has led to minimum Uj and assign

that job to such a machine. If two or more values are equal,
select the machine with minimum index (however there is no
difference in selecting from each).

(6) Transfer this job from US category into scheduled one, S.
(7) Update Cmax of each machine and go to Step 3.

The term “capable machines” used in ISETP denotes those ones
which are capable of processing some given jobs. To illustrate the
ISETP performance, solving an example could be useful. It should
be mentioned that for the sake of simplicity the jobs processing
times on different machines are regarded equal and all machines
are also capable of processing all jobs in this example, however in
the main calculations in Section 6 all assumptions are exerted.

Example 1. Consider the following problem with eight jobs and
three parallel machines. Table 1

Iteration #1:

Step 1. Sort jobs according to EDD rule and set them in US¼{J1,
J2, J4, J3, J7, J5, J6, J8}.
Step 2. Assign the first job to the first machine and set it in
scheduled job category, S¼{J1}.
Step 3. Assign the second job (J2) to each machine separately,

Cmax1 ¼ 4þ 6¼ 10; Cmax2 ¼ Cmax3 ¼ 6

Step 4. Compute all Uj as follows:

U1 ¼ jCmax1�d1j ¼ j10�5j ¼ 5; U2 ¼ jCmax2�d2j ¼ j6�5j ¼ 1;
U3 ¼ jCmax3�d3j ¼ j6�5j ¼ 1:

Step 5. Select the min Uj and assign J2 to such a machine. Since
two values are equal, select the machine with minimum index,
i.e., machine #2.
Step 6. Transfer this job from US category to S one, US¼{J4, J3, J7,
J5, J6, J8} and S¼{J1, J2}.
Step 7. Update Cmax of each machine, Cmax1 ¼ 4; Cmax2 ¼ 6;
Cmax3 ¼ 0:

Iteration #2:

Step 3. Assign the third job (J4) to each machine separately,

Cmax1 ¼ 4þ 7¼ 11; Cmax2 ¼ 6þ 7¼ 13; Cmax3 ¼ 7:

Step 4. Compute all Uj as follows:

U1 ¼ jCmax1�d1j ¼ j11�6j ¼ 5; U2 ¼ jCmax2�d2j ¼ j13�6j ¼ 7;
U3 ¼ jCmax3�d3j ¼ j7�6j ¼ 1:

Step 5. Select the min Uj and assign J4 to such machine, i.e.,
machine #3.
Step 6. Transfer this job from US category to S one, US¼{J3, J7, J5, J6,
J8} and S¼{J1, J2, J4}.
Step 7. Update Cmax of each machine, Cmax1 ¼ 4; Cmax2 ¼ 6;
Cmax3 ¼ 7:

Iteration #3:

Step 3. Assign the forth job (J3) to each machine separately,

Cmax1 ¼ 4þ 5¼ 9; Cmax2 ¼ 6þ 5¼ 11; Cmax3 ¼ 7þ 5¼ 12:

Step 4. Compute all Uj as follows:

U1 ¼ jCmax1�d1j ¼ j9�11j ¼ 2; U2 ¼ jCmax2�d2j ¼ j11�11j ¼ 0;
U3 ¼ jCmax3�d3j ¼ j12�11j ¼ 1:

Step 5. Select the min Uj and assign J3 to this machine,
i.e., machine #2.

Table 1
Input data for an eight job problem with three machines.

J 1 2 3 4 5 6 7 8

pi 4 6 5 7 5 6 4 6
di 5 5 11 6 13 13 11 20
αi 0.5 1 1 1.25 1.5 1 1.5 0.5
βi 0.5 0.5 1.25 0.5 0.5 1 3 0.5
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Step 6. Transfer this job from US category to S one, US¼{J7, J5, J6,
J8} and S¼{J1, J2, J4, J3}.
Step 7. Update Cmax of each machine, Cmax1 ¼ 4; Cmax2 ¼ 11;
Cmax3 ¼ 7:

Iteration #4:

Step 3. Assign the fifth job (J7) to each machine separately,

Cmax1 ¼ 4þ 4¼ 8; Cmax2 ¼ 11þ 4¼ 15; Cmax3 ¼ 7þ 4¼ 11:

Step 4. Compute all Uj as follows:

U1 ¼ jCmax1�d1j ¼ j8�11j ¼ 3; U2 ¼ jCmax2�d2j ¼ j15�11j ¼ 4;

U3 ¼ jCmax3�d3j ¼ j11�11j ¼ 0:

Step 5. Select the min Uj and assign J7 to this machine, i.e.,
machine #3.
Step 6. Transfer this job from US category to S one, US¼{J5, J6,
J8} and S¼{J1, J2, J4, J3, J7}.
Step 7. Update Cmax of each machine, Cmax1 ¼ 4; Cmax2 ¼ 11;
Cmax3 ¼ 11:

Iteration #5:

Step 3. Assign the sixth job (J5) to each machine separately,

Cmax1 ¼ 4þ 5¼ 9; Cmax2 ¼ 11þ 5¼ 16; Cmax3 ¼ 11þ 5¼ 16:

Step 4. Compute all Uj as follows:

U1 ¼ jCmax1�d1j ¼ j9�13j ¼ 4; U2 ¼ jCmax2�d2j ¼ j16�13j ¼ 3;

U3 ¼ jCmax3�d3j ¼ j16�13j ¼ 3:

Step 5. Select the min Uj and assign J5 to this machine. Since the
two values are equal, select the machine with minimum index,
i.e., machine #2.
Step 6. Transfer this job from US category to S one, US¼{J6, J8}
and S¼{J1, J2, J4, J3, J7, J5}.
Step 7. Update Cmax of each machine, Cmax1 ¼ 4; Cmax2 ¼ 16;
Cmax3 ¼ 11:

Iteration #6:

Step 3. Assign the seventh job (J6) to each machine separately,

Cmax1 ¼ 4þ 6¼ 10; Cmax2 ¼ 16þ 6¼ 22; Cmax3 ¼ 11þ 6¼ 17:

Step 4. Compute all Uj as follows:

U1 ¼ jCmax1�d1j ¼ j10�13j ¼ 3; U2 ¼ jCmax2�d2j ¼ j22�13j ¼ 9;

U3 ¼ jCmax3�d3j ¼ j17�13j ¼ 4:

Step 5. Select the min Uj and assign J6 to this machine. i.e.,
machine #1.
Step 6. Transfer this job from US category to S one, US¼{J8} and
S¼{J1, J2, J4, J3, J7, J5, J6}.
Step 7. Update Cmax of each machine, Cmax1 ¼ 10; Cmax2
¼ 16; Cmax3 ¼ 11:

Iteration #7:

Step 3. Finally, assign the last job in EDD order (J8) to each
machine separately,

Cmax1 ¼ 10þ 6¼ 16; Cmax2 ¼ 16þ 6¼ 22; Cmax3 ¼ 11þ 6¼ 17:

Step 4. Compute all Uj as follows:

U1 ¼ jCmax1�d1j ¼ j16�20j ¼ 4;
U2 ¼ jCmax2�d2j ¼ j22�20j ¼ 2; U3 ¼ jCmax3�d3j ¼ j17�20j ¼ 3:

Step 5. Select the min Uj and assign J8 to this machine. i.e.,
machine #2.
Step 6. Transfer this job from US category to S one, US¼{ } and
S¼{J1, J2, J4, J3, J7, J5, J6, J8}.
Step 7. Update Cmax of each machine, Cmax1 ¼ 10; Cmax2
¼ 22; Cmax3 ¼ 11:

Since there is no outstanding job in US category, the algorithm
is terminated. For the sake of comparison of obtained solution
with optimum one, this problem is solved by Lingo which the final
solution comes as follows: Table 2

As pointed out earlier, our proposed PNBC–NBE takes advan-
tage from the net benefit compression/expansion in parallel
machines. The logic in our algorithm is based on calculating the
difference between decreased total tardiness and the cost of
compression and decreased total earliness and the cost of expan-
sion of a job which is exerted by reducing or increasing of
processing time of a job by one time unit. By compressing or
expanding the jobs processing time, objective function reduces.
Each job – depending on its tardiness or earliness on given
machine – may compress or expand if this compression or
expansion is economical i.e., the compression or expansion cost
is smaller than its benefits (decreased tardiness or earliness). In
such a way the objective function value will be decreased and such
job will be compressed or expanded. The steps of our PNBC–NBE
heuristic algorithm are stated as follows:

Procedure 2. PNBC–NBE

(1) Assign the jobs on parallel machines using ISETP heuristic
technique, as an initial sequence.

(2) Employ NBC–NBE to determine the amount of reduction/
expansion of jobs processing times.

Table 2
Comparison of ISETP and lingo in given example.

ISETP Lingo

Z¼7 Zn¼6
M (1)¼J1� J6 M (1)¼ J2� J7
M (2)¼J2� J3� J5� J8 M (2)¼ J1� J3� J5
M (3)¼J4� J7 M (3)¼ J4� J6� J8

Table 3
Job information.

Job pi p′i p″i di αi βi ci c′i

1 4 3 5 3 4 6 1 2
2 6 5 7 11 4 6 1 2
3 5 4 6 18 4 6 1 2
4 7 5 8 10 4 6 1 2
5 5 3 7 6 4 6 1 2
6 6 5 7 10 4 6 1 2
7 4 3 6 12 4 6 1 2
8 6 4 7 17 4 6 1 2
9 5 4 6 17 4 6 1 2

10 5 4 6 22 4 6 1 2
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Do the three following steps (3–5) until stop criterion is met:

(3) Swap jobs and their corresponding capable machines ran-
domly in order to reduce the earliness and tardiness values.

(4) Accept new sequence if objective function value is reduced, go
to Step 5, else keep the previous sequence. Go to Step 3.

(5) Apply NBC–NBE to determine whether a given job could be
further compressed or else expanded. Go to Step 3.

(6) Determine the ultimate sequence and compute the final
amount of compression/expansion of jobs processing times.

In the aforementioned procedure, the stop criterion is defined
as maximum number of non-improvement iterations which is set
at 50.

Example 2. To validate the proposed model and illustrate its
various features, numerical example with randomly generated
data includes three machines and 10 jobs solved using branch
and bound (B&B) method under Lingo 9.0 software on a PC with a
3.4 GHz Intels Core™ i7-2600 processor and 4 GB RAM memory.
Table 3 presents the values of all input parameters for each and
every job. Since regarding different processing times for dissimilar
machines in which each job has also a crash and expansion
processing time (p′im and p″im) makes the reader confused, the
jobs processing times are regarded equal on all machines in this
example for the sake of straightforwardness. Moreover, assuming
capability of processing all jobs by all machines in this example is
also applied to get closer to such straightforwardness. However, in
the main calculations in Section 6 all normal, crash and expansion

processing times are regarded different on dissimilar machines
and each machine could only process some given jobs.

Table 4 presents the obtained solution containing the comple-
tion time, tardiness/earliness penalty of each job as well as
compression/expansion jobs processing times cost.

The objective function value (OFV) obtained after 1,092,056
iterations in CPU time 6:04′:15″ which is presented in Table 5 in
addition to its cost components.

Fig. 1 shows the schema of JIT in parallel machines for this
example. As could be seen, minimum earliness/tardiness and
consequently minimum compression/expansion cost are acquired
using such a sequence. In this example, completion time of job 4 is
8 but its due date is 10, which causes an earliness cost. Since the
earliness penalty unit of job 4 is 4, the total cost is then 2 � 4¼8.

5. Evolutionary algorithms

5.1. Imperialist competitive algorithm

Unlike the current evolutionary algorithms, such as GA and
simulated annealing (SA), which are inspired from a natural
process, ICA uses socio-political evolution processes, as source of
inspiration [56]. Similar to other evolutionary algorithms ICA
initiates with an initial population, like most evolutionary algo-
rithms. Each individual of the population is called a ‘country’
equivalent ‘chromosome’ in GA. Some of the most powerful
countries (in optimization terminology, countries with the least
cost) are selected to be the imperialist states and the other
countries constitute the colonies of these imperialists. All the
colonies of initial countries are partitioned among the mentioned
imperialists based on their power. Equivalent of fitness value in
the GA, the power of each country, is conversely proportional to its
cost. A set of one imperialist and its colonies is called an empire.

By constituting initial empires, each of their colonies begins
progresses toward their related imperialist country. This is a
simple kind of assimilation strategy which some of the imperialist
states followed that. Afterward, the imperialistic competition
starts among all the empires. Those empires which could not
win this competition and are not capable of increasing their power
or at least prevent decreasing its power will be removed from the
struggle. The imperialistic competition will slowly however surely
results in an enhancement in the power of powerful empires and a
decrease in the power of weaker ones.

The total power of an empire depends on both the power of the
imperialist country and the power of its colonies. This fact is
modeled by defining the total power of an empire as the power of
imperialist country plus a percentage of mean power of its
colonies [56].

A thing causes all countries to converge into a state in which
there exists only one empire in the world is colonies movement
toward their related imperialists along with struggle among
empires and also the collapse mechanism. In such a case, all other

Table 4
The obtained solution for each job.

Job Completion
time

Earliness
penalty

Tardiness
penalty

Compression
penalty

Expansion
penalty

1 3 0 0 1n1 0
2 11 0 0 1n1 0
3 18 0 0 0 1n2
4 8 2n4 0 0 0
5 6 0 0 0 0
6 10 0 0 0 1n2
7 12 0 0 0 0
8 17 0 0 0 1n2
9 17 0 0 0 1n2

10 22 0 0 0 0

Table 5
Objective function and its cost components.

OFV Earliness Tardiness Compression Expansion

18 8 0 2 8

X’9= P”9 – P9
E4= d4 – C4

J8J6

J3

J10

2015105

J1

J9J2J5

J7J4

M2

M3

M1

X1= P1 – P’1

Fig. 1. Schema of just-in-time in parallel machines for the considered example.
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countries will be considered colonies of that empire. In this ideal
new world, colonies have the same position and power as the
imperialist.

The major purpose of optimization is to acquire an optimal
solution. In our problem an array of variable values which must be
optimized is formed. Here, a country is a 1 � Nvar array which is
defined by

country¼ ðg1; g2; g3; ::::; gNvar
Þ

where each gi is a variable which should be optimized. Each of
these variables could be interpreted as a socio-political character-
istic of a country, such as religion, culture. From optimization
perspective a solution with least cost value is the best one.

By evaluating the cost function f at variables ðg1; g2; g3;…; gNvar
Þ

the cost of a country is stated as follows:

Cost ¼ f ðcountryÞ ¼ f ðg1; g2; g3;…; gNvar
Þ

In order to start the algorithm, first of all, we generate the initial
population of size Npop. We pick Nimp of the most powerful
countries to constitute the empires. The leftover Ncol of the
population will be the colonies each of which belongs to an
empire. We split the colonies among imperialists based on their
power so as to constitute the initial empires.

All steps of ICA technique including initial number of colonies
of an empire, movement of colonies toward the imperialist
(assimilation), exchanging positions of the imperialist and a
colony, total power of an empire, imperialistic competition,
elimination of the powerless empires and finally convergence
and stop criterion are applied according to Kayvanfar and Zandieh
[57] which is ignored in this section owing to brevity.

5.2. Genetic algorithm

One of the most important merits of GA is considering a large
number of sets of solutions in parallel. The GAs are bio-inspired
optimization methods [58] which are extensively used to solve
scheduling problems [59]. In contrast to other local search meth-
ods, such as SA or Tabu Search (TS) which are based on handling
one feasible solution, GA utilizes a population of individuals in its
search, giving it more resistance to premature convergence on
local minima [60].

5.2.1. Representation of solutions
An array of jobs for each machine that represents the proces-

sing order of the jobs assigned to that machine is the most
frequently used solution representation for the parallel machine
scheduling problem. Since all machines are not capable of

processing all jobs, the genes correspond to those jobs which
could not be processed on a given machine (chromosome) are left
blank. This action does not have any effect on jobs sequence. The
GA is initially formed by a population of individuals (as popsize),
where each individual consists of m arrays of jobs (one per
machine).

5.2.2. Initial population and population size
The key decision in GA implementation is determining the

appropriate population size. If the selected number is too small we
may not be able to attain a good solution. On the contrary the large
number takes too much computation time to achieve a better
solution [61]. In this study the population size is taken experi-
mentally 100. The population is randomly initialized, so that every
job has an equally likely chance of starting out on any capable one
machine.

5.2.3. Fitness function
The fitness evaluation goal is to calculate the goodness of the

candidate individuals in the population with respect to the
objective function and constraints of the proposed model. After
generation of new population, fitness value of each chromosome is
calculated (fk). The higher the fitness value, the better the
performance of the chromosome (i.e. parent). Therefore, parents
with higher fitness values have more chances to survive. Among
different criteria used as fitness value, as for our objective in this
study, difference of objective function from a large positive
number Γ (an upper bound) is considered as fitness value for each
individual in this paper as follows:

Fitness function¼ Γ�objective function ð15Þ
According to Eq. (15) parents with higher fitness value are more
eligible.

5.2.4. Selection mechanism
In the classical GAs, tournament and roulette wheel selection

operators are common. These operators either require fitness and
mapping calculations or the population to be continuously sorted.
In this paper we make selection of parents according to the
roulette wheel selection mechanism. In this technique, a prob-
ability of selection is assigned to each individual based on its
fitness value. In spite of existing higher probability in the selection
of better chromosomes, all individuals in the population will have
a chance to be selected. We choose the parents randomly after
ranking individuals based on their corresponding fitness and
giving weighted probability of selection to each individual in the
population.

1 3 * 5 2 6 * 7 4 8

7 3 * 2 6 5 * 1 8 4

1 3 2 6 5 7 4 8

7 3 5 2 6 1 8 4

Parent A

Parent B

Offspring A

Offspring B

Cutting points

Fig. 2. Two point crossover operator .
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5.2.5. Genetic operators
Reproduction is carried out by means of elitism process. In this

method after ranking individuals based on their fitness, the best
ones which have maximum fitness are directly copied into the
next generation. The crossover operator is also applied according
to a probability pc by selected individuals that are obtained by
roulette wheel technique. The aim of crossover operator is actually
generating two good individuals (offsprings) from two selected
progenitors (parents). In the literature, there are several common
crossover operators for scheduling problems, such as one-point,
two-point, uniform. A standard two-point crossover is used in this
paper to produce two offsprings from two parent solutions. Having
randomly chosen two points in a string, the sub-strings between
the crossover points are interchanged. After such interchanging, if
a job could not be processed on new chromosome, the corre-
sponding gen left blank. Fig. 2 depicts applying the crossover
operator on two selected parents.

A mutation operator according to a probability pm could be
applied once the offspring are obtained. By testing different
mutation operators, the swap mutation yielded the best perfor-
mance. This operator works by swapping two genes in the selected
individual (chromosome) and keeps also away from getting stuck
in the local suboptimal solutions and is very helpful to maintain
the wealth of the population in dealing with large scale problems.
Fig. 3 shows the mutation operator in which the offspring is
produced by exchanging positions of two randomly selected genes,
i.e., numbers 5 and 7. Generally, mutation operator is applied with
the intention of diversifying the population in order that it does
not prematurely converge to multiple copies of one solution.

5.2.6. Termination criterion
The number of generations (iterations) is used as the termina-

tion criterion. The lower number of generations, the lower prob-
ability of finding the best result would be and vice versa. On the
other side when the number of generations is too high, the longer
would be the iteration time. In this paper according to the testing
different values experimentally, “50 non-improvement successive
iterations” are regarded as stopping criterion.

5.3. The proposed hybrid IIGNN

Hybrid algorithms have received considerable interest in recent
years and are being increasingly used to solve real-world pro-
blems. The deficiencies of existent meta-heuristics give rise to
hybrid methods. Actually, thanks to the complementary properties
of hybrid algorithms, the researchers persuade to employ these
techniques, since hybrid approaches often outperform either
method operating alone. However, they still require more compu-
tational effort.

The most common form of using hybrid methods is a two-level
search technique in which a local search is employed inside
population-based methods to promote either the entire or a
fraction of the newly generated offspring. The time needed to
attain the global optimum could be further reduced if local search
techniques are employed to accelerate locating the most promis-
ing search space.

Since in ICA choosing an empire is analogous to the roulette
wheel process which is used in selecting parents in GA and since

calculation of the cumulative distribution function is not needed in
ICA, i.e., the selection is based on only the values of probabilities of
selection, this method is much faster than the conventional roulette
wheel and consequently much faster than GA [57]. On the other
hand, our proposed ISETP is a deterministic algorithm and could be
implemented in a negligible computational time even in large size
instances. So, these two techniques take advantage of high conver-
gence speed while GA takes so longer, but GA as a well-known
powerful meta-heuristic algorithm usually yields higher quality
solutions compared with other techniques.

In this study, in order to improve solutions quality, we employ a
hybrid heuristic in which our GA merges within ICA and ISETP. As
pointed out earlier, such hybrid method benefits high speed of
finding an initial solution using ISETP and ICA than GA and
potential power of GA as a well-known population based techni-
que in approaching good final solutions compared with ISETP and
ICA. In better words, our ISETP and ICA firstly produce two initial
solutions (chromosomes) in a small time and the other individuals
are randomly generated by GA. Subsequently, the NBC–NBE is
applied to minimize the objective function by decreasing/increas-
ing jobs processing times for a given sequence on each machine.
This hybrid heuristic is called IIGNN. The population size of IIGNN
is regarded 100 same as in GA. It is also noticeable that the core
component of this proposed hybrid method is genetic algorithm
module that continuously searches the solution space.

The IIGNN is supposed to yield higher quality solutions with
respect to the other used techniques in this study, since it takes
benefits from relative advantages of all algorithms, i.e., speed and
power of convergence within lesser computational time.

6. Computational study

The objective of the computational experiments described in
this section is to evaluate the performance of the proposed
algorithms. All instances are implemented in MATLAB 7.11.0 and
run on a PC with a 3.4 GHz Intels Core™ i7-2600 processor and
4 GB RAM memory.

6.1. Test problems

Two sets of experiments are performed in which the input
parameters are as follows:

Normal, crash and expansion processing times (pim,p′im and p″im)
are discretely uniformly distributed as follows, respectively: (3,
25), (0.5� pi, pi) and (pi, 1.5� pi). Due dates follow a uniform
distribution as [dmin, dmin+ρP] where dmin¼max (0, P(υ�ρ/2)) and
P ¼ 1=m∑M

m ¼ 1∑
N
i ¼ 1pim. The expression of P aims at satisfying the

criteria of scale invariance and regularity described by Hall and
Posner [5] for generating experimental scheduling instances. The
two parameters υ and ρ are the tardiness and range parameters,
respectively which have been assumed as follows in this paper:
υA{0.2, 0.5, 0.8} and ρA{0.2, 0.5, 0.8}. Number of jobs (N)
and number of machines (M) are assumed {10, 20 and 50} and
{2, 3 and 5} respectively. Compression and expansion unit cost
(cim and c′im) are uniformly distributed as (0.1, 2.5). Also, earliness
and tardiness penalties (αj and βj) are uniformly distributed
as (0.5, 2.5) and (0.5, 4.5) respectively. Finally setup times (Skim)
are generated from a discrete uniform distribution between
10 and 90.
For each quadruple (N, M, υ, ρ) three instances are generated in
which each case has run five times in all methods so as to
guarantee constancy of these techniques. For each combination
of such quadruple totally 34�3�5¼1215 problems for each
method are generated consequently.

2 4 5 3 6 7 1 8

2 4 7 3 6 5 1 8

Parent 

Offspring

Fig. 3. Mutation operator .
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6.2. Performance measures

In order to evaluate the performance of the proposed algo-
rithms, two metrics are applied in this subsection. Since small
sized problems (problems with 10 jobs on each machine) could be
solved optimally by Lingo, the percentage relative error (PRE) is
employed to assess the algorithms performance in such groups of
instances. This metric is calculated as follows:

PRE¼ Algsol�O
O

� 100 ð16Þ

where Algsol is the objective value obtained by selected algorithm
and O is the optimum value obtained by Lingo.

In medium-to-large cases, the relative percentage deviation
(RPD) is employed to compare the efficiency of all heuristic
methods with meta-heuristic techniques. The RPD computes in
this fashion:

RPD¼ Algsol�Minsol

Minsol
� 100 ð17Þ

In which Algsol is the obtained objective value by the selected
technique and Minsol represents the best solution obtained for
each case. Lower values of PRE and RPD are preferable perceptibly.

6.3. Comparative results

In small instances the obtained optimal solutions are compared
with (1) PNBC–NBE, (2) ICA equipped with NBC–NBE called INN,
(3) GA equipped with NBC–NBE called GNN and (4) a hybrid
technique called IIGNN.

The proposed hybrid IIGNN consists of ISETP, ICA and GA which
has been already described in previous section. Also, INN work out
as follows: ICA and NBC–NBE are replaced with the mathematical

model where ICA search the best possible sequence and NBC–NBE
gives the optimal jobs amount set of compression/expansion on a
given machine. The similar procedure is done for GNN, i.e.,
replacing GA and NBC–NBE with the mathematical model.

In medium-to-large size cases the PNBC–NBE, INN, GNN and
IIGNN are compared with each other so as to determine the
performance of all algorithms. The computational results for all
small and medium-to-large size instances are shown in
Tables 6 and 7 respectively.

As could be seen, in small cases, PNBC–NBE has the largest gap
with the optimal solutions while our hybrid IIGNN has the
smallest one in the average. Moreover, INN and GNN have similar
performance (a 2.78% difference) however GNN outperforms INN
in the average but by consuming more computational time. Also
by increasing the number of machines the quality of PNBC–NBE
solutions enhanced while all other algorithms do not follow such
an improvement. In medium-to-large size problems, as could be
seen, IIGNN yields again the best solutions among all other
techniques while PNBC–NBE shows the weakest performance in
the average. In this category, by increasing the number of
machines, GNN has a little fluctuation in the range of 3.34% RPD
while it could be said IIGNN follows on a constant trend to some
extent (regardless of tiny decrease in RPD by increasing the
number of machines). Also INN has a similar trend compared to
GNN where varies in the range of 2.87% RPD. In fact, the GNN and
INN quality undergo by a little fluctuation. Fig. 4 shows the
average deviation of each algorithm from optimal solution in
small size instances. Also in Fig. 5 the average deviation of all
techniques with respect to the best obtained solutions in medium-
to-large size problems is demonstrated.

It is noticeable that the computational time of all algorithms is
incomparable with respect to Lingo in small instances, especially
PNBC–NBE. This matter reveals the importance of presenting

Table 6
Computational results for small size problems.

M J υ ρ Lingo PNBC–NBE INN GNN IIGNN

MCPU time MCPU time PREavg MCPU time PREavg mcpu time PREavg MCPU time PREavg

2 10 0.2 0.2 53329.031 0.015 23.34 5.485 16.64 16.365 15.35 14.325 9.12
0.5 65734.646 0.019 35.36 4.356 23.46 14.579 20.16 12.326 8.35
0.8 74461.27 0.008 23.94 5.235 16.65 17.112 14.32 16.325 10.15

0.5 0.2 56869.897 0.017 45.63 4.162 14.23 16.029 15.65 13.378 9.96
0.5 69591.923 0.029 35.79 3.965 16.48 15.023 11.23 12.778 8.65
0.8 44495.132 0.012 44.98 5.134 16.54 18.754 14.96 14.329 11.48

0.8 0.2 50264.274 0.009 38.31 4.589 24.15 14.258 20.37 11.456 9.94
0.5 46045.609 0.026 48.16 3.968 22.13 16.348 23.65 14.679 10.22
0.8 34701.107 0.019 44.78 4.584 16.79 15.013 14.32 11.158 11.17

Mean 55054.77 0.017 37.81 4.609 18.56 15.942 16.67 13.417 9.89
3 10 0.2 0.2 7882.3639 0.016 25.19 7.385 21.31 18.329 24.65 16.236 12.36

0.5 19082.645 0.021 34.31 6.471 25.39 19.467 20.15 16.365 10.98
0.8 11821.907 0.024 44.15 4.265 16.35 18.743 13.42 16.321 10.12

0.5 0.2 15936.675 0.019 30.82 4.965 22.78 17.321 16.78 14.701 9.98
0.5 12344.04 0.011 29.34 7.418 19.23 19.395 18.32 16.365 12.36
0.8 10103.467 0.017 36.18 6.018 15.36 18.368 14.97 17.369 11.08

0.8 0.2 17419.811 0.018 20.84 7.281 14.48 19.114 11.19 16.132 9.36
0.5 23077.393 0.019 21.93 6.114 19.76 16.357 19.34 16.325 12.65
0.8 22781.849 0.026 23.78 6.187 27.65 17.158 19.31 16.321 10.71

Mean 15605.57 0.019 29.62 6.234 20.26 18.250 17.57 16.237 11.07
5 10 0.2 0.2 33430.647 0.024 34.15 6.325 24.48 19.325 20.35 16.465 14.36

0.5 34072.351 0.042 29.97 4.365 22.78 17.326 17.39 15.465 13.12
0.8 33149.912 0.012 22.34 6.987 23.48 19.589 18.65 19.645 12.79

0.5 0.2 31026.56 0.016 22.17 5.778 20.98 18.369 20.39 17.326 11.37
0.5 29023.875 0.031 22.09 7.719 20.45 20.415 16.34 16.125 10.31
0.8 39783.892 0.028 34.48 6.981 24.09 18.499 19.33 19.354 12.34

0.8 0.2 37544.497 0.043 22.36 6.134 19.65 15.656 18.14 16.265 14.72
0.5 34808.227 0.017 31.65 6.947 27.98 18.326 21.07 16.458 15.55
0.8 36737.806 0.017 24.36 7.195 19.07 19.158 17.65 19.413 12.26

Mean 34397.53 0.026 27.06 6.492 22.55 18.518 18.81 17.391 12.98
Mean of all 35019.29 0.021 31.50 5.778 20.46 17.570 17.68 15.682 11.31
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heuristics and then hybrid algorithm with an approximately 11%
gap in obtained solutions with the optimal ones within very
economical computational time.

7. Conclusions and future researches

In this study we have successfully implemented minimizing the
problem of total weighted earliness and tardiness, makespan as
well as jobs cost compressing and expanding depends on the
amount of compression/expansion on unrelated parallel machines

environment in which jobs processing times are controllable. Jobs
due dates are distinct, no preemption of operations of each job is
allowed and the setup time for each job on each machine is
sequence-dependent. Also after starting the process by machine,
no idle time could be inserted into the schedule and each machine
could only process some predetermined jobs. A mixed integer
programming (MIP) is proposed for the considered problem
and solved via Lingo optimally in small size cases. Also a heuristic
for obtaining initial sequence on parallel machines based on
Just-In-Time (JIT) approach called ISETP is proposed and subse-
quently a parallel net benefit compression-net benefit expansion

Table 7
Computational results for medium-to-large size problems.

M J υ ρ PNBC–NBE INN GNN IIGNN

MCPU time RPDavg MCPU time RPDavg MCPU time RPDavg MCPU time RPDavg

2 20 0.2 0.2 0.036 30.89 16.465 7.57 40.653 4.25 35.265 2.42
0.5 0.029 41.14 15.648 8.44 39.456 6.11 33.456 0.00
0.8 0.03 33.09 14.465 22.09 45.258 5.53 40.154 2.53

0.5 0.2 0.041 40.78 18.174 17.34 41.256 13.08 39.997 5.67
0.5 0.036 56.09 16.435 18.84 39.654 9.82 36.564 1.08
0.8 0.034 48.98 18.734 15.83 41.158 4.31 37.184 0.98

0.8 0.2 0.029 30.03 13.369 13.98 39.445 5.23 31.255 1.03
0.5 0.034 33.94 17.398 18.33 33.125 4.28 33.485 0.00
0.8 0.028 40.25 17.958 20.07 39.648 11.34 30.256 3.42

50 0.2 0.2 0.069 38.94 18.365 24.82 41.258 12.09 33.781 5.23
0.5 0.056 45.81 18.212 16.24 39.658 6.34 34.154 1.06
0.8 0.076 30.09 16.365 17.34 37.285 5.82 31.054 1.67

0.5 0.2 0.066 36.32 16.458 13.49 41.256 9.22 36.609 3.14
0.5 0.054 35.88 13.854 11.03 41.379 6.84 40.018 1.39
0.8 0.057 37.31 18.952 9.51 34.558 4.24 31.975 0.00

0.8 0.2 0.064 25.75 19.483 8.91 40.625 4.07 35.365 0.06
0.5 0.069 49.81 17.354 13.93 41.654 5.85 38.156 1.14
0.8 0.071 29.27 15.021 20.81 38.204 14.39 32.405 4.96

Mean 0.049 38.02 16.817 15.48 39.752 7.38 35.063 1.99
3 20 0.2 0.2 0.029 23.85 12.354 14.87 34.869 18.92 30.012 5.23

0.5 0.023 38.24 14.265 21.04 32.654 15.24 31.256 6.12
0.8 0.032 29.09 18.657 16.98 31.666 11.04 32.654 2.42

0.5 0.2 0.027 31.95 15.445 20.54 40.012 14.85 34.857 2.09
0.5 0.036 37.67 16.348 23.94 32.524 13.05 25.699 0.00
0.8 0.037 33.82 17.454 22.46 34.154 8.43 30.214 1.85

0.8 0.2 0.035 29.46 16.365 16.35 33.254 11.89 28.558 3.12
0.5 0.029 40.82 15.332 17.93 36.482 10.33 32.154 1.42
0.8 0.031 22.99 18.258 12.42 37.554 6.36 31.015 0.04

50 0.2 0.2 0.054 33.78 18.348 20.01 46.778 9.53 40.145 0.65
0.5 0.065 41.93 24.854 23.94 46.398 10.04 38.568 1.85
0.8 0.048 30.86 26.352 16.34 35.415 9.32 30.145 3.12

0.5 0.2 0.039 38.63 19.124 16.93 46.337 6.45 39.654 0.00
0.5 0.058 29.82 22.14 12.53 44.654 5.93 39.078 0.19
0.8 0.054 41.67 20.367 15.93 43.113 9.32 37.456 1.66

0.8 0.2 0.064 42.78 19.341 20.43 42.154 11.53 32.002 1.39
0.5 0.061 36.89 25.789 18.25 41.351 9.34 33.096 3.22
0.8 0.049 31.09 16.369 19.42 40.021 11.31 35.235 1.04

Mean 0.043 34.19 18.731 18.35 38.855 10.72 33.433 1.97
5 20 0.2 0.2 0.024 20.39 13.458 10.75 49.258 6.32 39.325 0.32

0.5 0.023 34.24 16.354 19.49 46.345 12.42 41.201 2.09
0.8 0.021 39.09 14.784 23.95 50.289 14.12 41.074 1.48

0.5 0.2 0.019 40.24 18.742 23.69 45.658 12.42 35.365 0.00
0.5 0.019 29.73 13.118 19.75 47.458 8.45 41.154 1.88
0.8 0.023 32.99 16.468 19.42 45.669 9.35 35.465 3.12

0.8 0.2 0.02 29.16 16.754 18.49 51.205 10.53 45.987 2.65
0.5 0.021 34.23 13.456 16.36 48.154 6.32 38.598 0.91
0.8 0.027 21.42 17.447 12.42 47.845 4.53 36.45 0.00

50 0.2 0.2 0.046 31.04 19.668 19.44 49.254 11.03 40.015 2.42
0.5 0.039 40.43 20.185 20.23 56.344 9.34 49.124 4.23
0.8 0.034 29.53 18.359 15.98 49.756 6.43 40.105 3.42

0.5 0.2 0.039 39.34 20.369 19.01 47.458 9.53 46.326 2.94
0.5 0.041 33.53 19.158 11.53 58.358 5.23 42.654 0.53
0.8 0.045 29.54 16.224 13.23 56.655 6.43 50.125 1.92

0.8 0.2 0.043 34.59 15.486 12.48 62.771 5.34 50.045 2.21
0.5 0.039 26.83 19.899 9.32 56.109 3.22 39.108 0.00
0.8 0.036 31.03 19.341 20.21 49.022 12.93 39.691 3.42

Mean 0.031 32.08 17.182 16.99 50.978 8.55 41.767 1.86
Mean of all 0.041 34.76 17.577 16.94 43.195 8.88 36.755 1.94
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(PNBC–NBE) heuristic for acquiring an optimal set of jobs com-
pression/expansion processing times in a given sequence on each
machine is then presented.

Two different types of instances are considered to be tested on
this problem. In all categories, four algorithms including PNBC–
NBE, ICA equipped with NBC–NBE called INN, GA equipped with
NBC–NBE called GNN and a hybrid one so-called IIGNN are
conducted. In small size cases which could be solved optimally,
percentage relative error (PRE) and in medium-to-large size ones,
relative percentage deviation (RPD) are employed as the perfor-
mance measure. Computational results demonstrate the power
and the high quality of our proposed hybrid heuristic for solving
such a complex and applicable problem.

Extending the multi-objective model of the above-mentioned
problem could be regarded as a direction for future research in
order to observe more features in approaching to JIT policy. Also
research efforts should be made in the future to implement the
considered problem with the same approach on other environ-
ments such as job shop.
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